- Ryan Prescott Adams, Oliver Stegle:
 Gaussian process product models for nonparametric nonstationarity. 1-8
 Electronic Edition (ACM DL) BibTeX
- Cyril Allauzen, Mehryar Mohri, Ameet Talwalkar:
 Sequence kernels for predicting protein essentiality. 9-16
 Electronic Edition (ACM DL) BibTeX
- Qi An, Chunping Wang, Ivo Shterev, Eric Wang, Lawrence Carin, David B. Dunson:
 Hierarchical kernel stick-breaking process for multi-task image analysis. 17-24
 Electronic Edition (ACM DL) BibTeX
- Francis R. Bach:
 Graph kernels between point clouds. 25-32
 Electronic Edition (ACM DL) BibTeX
- Francis R. Bach:
 Bolasso: model consistent Lasso estimation through the bootstrap. 33-40
 Electronic Edition (ACM DL) BibTeX
- Leon Barrett, Srini Narayanan:
 Learning all optimal policies with multiple criteria. 41-47
 Electronic Edition (ACM DL) BibTeX
- Charles Bergeron, Jed Zaretzki, Curt M. Breneman, Kristin P. Bennett:
 Multiple instance ranking. 48-55
 Electronic Edition (ACM DL) BibTeX
- Steffen Bickel, Jasmina Bogojeska, Thomas Lengauer, Tobias Scheffer:
 Multi-task learning for HIV therapy screening. 56-63
 Electronic Edition (ACM DL) BibTeX
- Michael Biggs, Ali Ghodsi, Stephen A. Vavasis:
 Nonnegative matrix factorization via rank-one downdate. 64-71
 Electronic Edition (ACM DL) BibTeX
- Michael H. Bowling, Michael Johanson, Neil Burch, Duane Szafron:
 Strategy evaluation in extensive games with importance sampling. 72-79
 Electronic Edition (ACM DL) BibTeX
- Brent Bryan, Jeff G. Schneider:
 Actively learning level-sets of composite functions. 80-87
 Electronic Edition (ACM DL) BibTeX
- Francois Caron, Arnaud Doucet:
 Sparse Bayesian nonparametric regression. 88-95
 Electronic Edition (ACM DL) BibTeX
- Rich Caruana, Nikolaos Karampatziakis, Ainur Yessenalina:
 An empirical evaluation of supervised learning in high dimensions. 96-103
 Electronic Edition (ACM DL) BibTeX
- Bryan C. Catanzaro, Narayanan Sundaram, Kurt Keutzer:
 Fast support vector machine training and classification on graphics processors. 104-111
 Electronic Edition (ACM DL) BibTeX
- Lawrence Cayton:
 Fast nearest neighbor retrieval for bregman divergences. 112-119
 Electronic Edition (ACM DL) BibTeX
- Hakan Cevikalp, Bill Triggs, Robi Polikar:
 Nearest hyperdisk methods for high-dimensional classification. 120-127
 Electronic Edition (ACM DL) BibTeX
- David L. Chen, Raymond J. Mooney:
 Learning to sportscast: a test of grounded language acquisition. 128-135
 Electronic Edition (ACM DL) BibTeX
- Jianhui Chen, Jieping Ye:
 Training SVM with indefinite kernels. 136-143
 Electronic Edition (ACM DL) BibTeX
- Adam Coates, Pieter Abbeel, Andrew Y. Ng:
 Learning for control from multiple demonstrations. 144-151
 Electronic Edition (ACM DL) BibTeX
- Tom Coleman, James Saunderson, Anthony Wirth:
 Spectral clustering with inconsistent advice. 152-159
 Electronic Edition (ACM DL) BibTeX
- Ronan Collobert, Jason Weston:
 A unified architecture for natural language processing: deep neural networks with multitask learning. 160-167
 Electronic Edition (ACM DL) BibTeX
- Andrés Corrada-Emmanuel, Howard J. Schultz:
 Autonomous geometric precision error estimation in low-level computer vision tasks. 168-175
 Electronic Edition (ACM DL) BibTeX
- Corinna Cortes, Mehryar Mohri, Dmitry Pechyony, Ashish Rastogi:
 Stability of transductive regression algorithms. 176-183
 Electronic Edition (ACM DL) BibTeX
- Koby Crammer, Partha Pratim Talukdar, Fernando Pereira:
 A rate-distortion one-class model and its applications to clustering. 184-191
 Electronic Edition (ACM DL) BibTeX
- John P. Cunningham, Krishna V. Shenoy, Maneesh Sahani:
 Fast Gaussian process methods for point process intensity estimation. 192-199
 Electronic Edition (ACM DL) BibTeX
- Wenyuan Dai, Qiang Yang, Gui-Rong Xue, Yong Yu:
 Self-taught clustering. 200-207
 Electronic Edition (ACM DL) BibTeX
- Sanjoy Dasgupta, Daniel Hsu:
 Hierarchical sampling for active learning. 208-215
 Electronic Edition (ACM DL) BibTeX
- Ofer Dekel, Ohad Shamir:
 Learning to classify with missing and corrupted features. 216-223
 Electronic Edition (ACM DL) BibTeX
- Krzysztof Dembczynski, Wojciech Kotlowski, Roman Slowinski:
 Maximum likelihood rule ensembles. 224-231
 Electronic Edition (ACM DL) BibTeX
- Uwe Dick, Peter Haider, Tobias Scheffer:
 Learning from incomplete data with infinite imputations. 232-239
 Electronic Edition (ACM DL) BibTeX
- Carlos Diuk, Andre Cohen, Michael L. Littman:
 An object-oriented representation for efficient reinforcement learning. 240-247
 Electronic Edition (ACM DL) BibTeX
- Pinar Donmez, Jaime G. Carbonell:
 Optimizing estimated loss reduction for active sampling in rank learning. 248-255
 Electronic Edition (ACM DL) BibTeX
- Finale Doshi, Joelle Pineau, Nicholas Roy:
 Reinforcement learning with limited reinforcement: using Bayes risk for active learning in POMDPs. 256-263
 Electronic Edition (ACM DL) BibTeX
- Mark Dredze, Koby Crammer, Fernando Pereira:
 Confidence-weighted linear classification. 264-271
 Electronic Edition (ACM DL) BibTeX
- John Duchi, Shai Shalev-Shwartz, Yoram Singer, Tushar Chandra:
 Efficient projections onto the l1-ball for learning in high dimensions. 272-279
 Electronic Edition (ACM DL) BibTeX
- Charles Dugas, David Gadoury:
 Pointwise exact bootstrap distributions of cost curves. 280-287
 Electronic Edition (ACM DL) BibTeX
- Murat Dundar, Matthias Wolf, Sarang Lakare, Marcos Salganicoff, Vikas C. Raykar:
 Polyhedral classifier for target detection: a case study: colorectal cancer. 288-295
 Electronic Edition (ACM DL) BibTeX
- Arkady Epshteyn, Adam Vogel, Gerald DeJong:
 Active reinforcement learning. 296-303
 Electronic Edition (ACM DL) BibTeX
- Thomas Finley, Thorsten Joachims:
 Training structural SVMs when exact inference is intractable. 304-311
 Electronic Edition (ACM DL) BibTeX
- Emily B. Fox, Erik B. Sudderth, Michael I. Jordan, Alan S. Willsky:
 An HDP-HMM for systems with state persistence. 312-319
 Electronic Edition (ACM DL) BibTeX
- Vojtech Franc, Sören Sonnenburg:
 Optimized cutting plane algorithm for support vector machines. 320-327
 Electronic Edition (ACM DL) BibTeX
- Vojtech Franc, Pavel Laskov, Klaus-Robert Müller:
 Stopping conditions for exact computation of leave-one-out error in support vector machines. 328-335
 Electronic Edition (ACM DL) BibTeX
- Jordan Frank, Shie Mannor, Doina Precup:
 Reinforcement learning in the presence of rare events. 336-343
 Electronic Edition (ACM DL) BibTeX
- Ryan Gomes, Max Welling, Pietro Perona:
 Memory bounded inference in topic models. 344-351
 Electronic Edition (ACM DL) BibTeX
- Mehmet Gönen, Ethem Alpaydin:
 Localized multiple kernel learning. 352-359
 Electronic Edition (ACM DL) BibTeX
- Geoffrey J. Gordon, Amy R. Greenwald, Casey Marks:
 No-regret learning in convex games. 360-367
 Electronic Edition (ACM DL) BibTeX
- Gholamreza Haffari, Yang Wang, Shaojun Wang, Greg Mori, Feng Jiao:
 Boosting with incomplete information. 368-375
 Electronic Edition (ACM DL) BibTeX
- Jihun Ham, Daniel D. Lee:
 Grassmann discriminant analysis: a unifying view on subspace-based learning. 376-383
 Electronic Edition (ACM DL) BibTeX
- Georg Heigold, Thomas Deselaers, Ralf Schlüter, Hermann Ney:
 Modified MMI/MPE: a direct evaluation of the margin in speech recognition. 384-391
 Electronic Edition (ACM DL) BibTeX
- Katherine A. Heller, Sinead Williamson, Zoubin Ghahramani:
 Statistical models for partial membership. 392-399
 Electronic Edition (ACM DL) BibTeX
- Steven C. H. Hoi, Rong Jin:
 Active kernel learning. 400-407
 Electronic Edition (ACM DL) BibTeX
- Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin, S. Sathiya Keerthi, S. Sundararajan:
 A dual coordinate descent method for large-scale linear SVM. 408-415
 Electronic Edition (ACM DL) BibTeX
- Tuyen N. Huynh, Raymond J. Mooney:
 Discriminative structure and parameter learning for Markov logic networks. 416-423
 Electronic Edition (ACM DL) BibTeX
- Aapo Hyvärinen, Shohei Shimizu, Patrik O. Hoyer:
 Causal modelling combining instantaneous and lagged effects: an identifiable model based on non-Gaussianity. 424-431
 Electronic Edition (ACM DL) BibTeX
- Sham M. Kakade, Shai Shalev-Shwartz, Ambuj Tewari:
 Efficient bandit algorithms for online multiclass prediction. 440-447
 Electronic Edition (ACM DL) BibTeX
- Michael Karlen, Jason Weston, Ayse Erkan, Ronan Collobert:
 Large scale manifold transduction. 448-455
 Electronic Edition (ACM DL) BibTeX
- Kristian Kersting, Kurt Driessens:
 Non-parametric policy gradients: a unified treatment of propositional and relational domains. 456-463
 Electronic Edition (ACM DL) BibTeX
- Sergey Kirshner, Barnabás Póczos:
 ICA and ISA using Schweizer-Wolff measure of dependence. 464-471
 Electronic Edition (ACM DL) BibTeX
- Alexandre Klementiev, Dan Roth, Kevin Small:
 Unsupervised rank aggregation with distance-based models. 472-479
 Electronic Edition (ACM DL) BibTeX
- Pushmeet Kohli, Alexander Shekhovtsov, Carsten Rother, Vladimir Kolmogorov, Philip H. S. Torr:
 On partial optimality in multi-label MRFs. 480-487
 Electronic Edition (ACM DL) BibTeX
- J. Zico Kolter, Adam Coates, Andrew Y. Ng, Yi Gu, Charles DuHadway:
 Space-indexed dynamic programming: learning to follow trajectories. 488-495
 Electronic Edition (ACM DL) BibTeX
- Risi Imre Kondor, Karsten M. Borgwardt:
 The skew spectrum of graphs. 496-503
 Electronic Edition (ACM DL) BibTeX
- Ondrej Kuzelka, Filip Zelezný:
 Fast estimation of first-order clause coverage through randomization and maximum likelihood. 504-511
 Electronic Edition (ACM DL) BibTeX
- Yanyan Lan, Tie-Yan Liu, Tao Qin, Zhiming Ma, Hang Li:
 Query-level stability and generalization in learning to rank. 512-519
 Electronic Edition (ACM DL) BibTeX
- Niels Landwehr:
 Modeling interleaved hidden processes. 520-527
 Electronic Edition (ACM DL) BibTeX
- John Langford, Alexander Strehl, Jennifer Wortman:
 Exploration scavenging. 528-535
 Electronic Edition (ACM DL) BibTeX
- Hugo Larochelle, Yoshua Bengio:
 Classification using discriminative restricted Boltzmann machines. 536-543
 Electronic Edition (ACM DL) BibTeX
- Alessandro Lazaric, Marcello Restelli, Andrea Bonarini:
 Transfer of samples in batch reinforcement learning. 544-551
 Electronic Edition (ACM DL) BibTeX
- Guy Lebanon, Yang Zhao:
 Local likelihood modeling of temporal text streams. 552-559
 Electronic Edition (ACM DL) BibTeX
- Lihong Li:
 A worst-case comparison between temporal difference and residual gradient with linear function approximation. 560-567
 Electronic Edition (ACM DL) BibTeX
- Lihong Li, Michael L. Littman, Thomas J. Walsh:
 Knows what it knows: a framework for self-aware learning. 568-575
 Electronic Edition (ACM DL) BibTeX
- Zhenguo Li, Jianzhuang Liu, Xiaoou Tang:
 Pairwise constraint propagation by semidefinite programming for semi-supervised classification. 576-583
 Electronic Edition (ACM DL) BibTeX
- Percy Liang, Michael I. Jordan:
 An asymptotic analysis of generative, discriminative, and pseudolikelihood estimators. 584-591
 Electronic Edition (ACM DL) BibTeX
- Percy Liang, Hal Daumé III, Dan Klein:
 Structure compilation: trading structure for features. 592-599
 Electronic Edition (ACM DL) BibTeX
- Nicolas Loeff, David A. Forsyth, Deepak Ramachandran:
 ManifoldBoost: stagewise function approximation for fully-, semi- and un-supervised learning. 600-607
 Electronic Edition (ACM DL) BibTeX
- Philip M. Long, Rocco A. Servedio:
 Random classification noise defeats all convex potential boosters. 608-615
 Electronic Edition (ACM DL) BibTeX
- Haiping Lu, Konstantinos N. Plataniotis, Anastasios N. Venetsanopoulos:
 Uncorrelated multilinear principal component analysis through successive variance maximization. 616-623
 Electronic Edition (ACM DL) BibTeX
- Zhengdong Lu, Todd K. Leen, Yonghong Huang, Deniz Erdogmus:
 A reproducing kernel Hilbert space framework for pairwise time series distances. 624-631
 Electronic Edition (ACM DL) BibTeX
- Takaki Makino, Toshihisa Takagi:
 On-line discovery of temporal-difference networks. 632-639
 Electronic Edition (ACM DL) BibTeX
- André F. T. Martins, Mário A. T. Figueiredo, Pedro M. Q. Aguiar, Noah A. Smith, Eric P. Xing:
 Nonextensive entropic kernels. 640-647
 Electronic Edition (ACM DL) BibTeX
- Neville Mehta, Soumya Ray, Prasad Tadepalli, Thomas G. Dietterich:
 Automatic discovery and transfer of MAXQ hierarchies. 648-655
 Electronic Edition (ACM DL) BibTeX
- Raghu Meka, Prateek Jain, Constantine Caramanis, Inderjit S. Dhillon:
 Rank minimization via online learning. 656-663
 Electronic Edition (ACM DL) BibTeX
- Francisco S. Melo, Sean P. Meyn, M. Isabel Ribeiro:
 An analysis of reinforcement learning with function approximation. 664-671
 Electronic Edition (ACM DL) BibTeX
- Volodymyr Mnih, Csaba Szepesvári, Jean-Yves Audibert:
 Empirical Bernstein stopping. 672-679
 Electronic Edition (ACM DL) BibTeX
- M. Pawan Kumar, Philip H. S. Torr:
 Efficiently solving convex relaxations for MAP estimation. 680-687
 Electronic Edition (ACM DL) BibTeX
- Shravan Matthur Narayanamurthy, Balaraman Ravindran:
 On the hardness of finding symmetries in Markov decision processes. 688-695
 Electronic Edition (ACM DL) BibTeX
- Siegfried Nijssen:
 Bayes optimal classification for decision trees. 696-703
 Electronic Edition (ACM DL) BibTeX
- Sebastian Nowozin, Gökhan H. Bakir:
 A decoupled approach to exemplar-based unsupervised learning. 704-711
 Electronic Edition (ACM DL) BibTeX
- Deirdre B. O'Brien, Maya R. Gupta, Robert M. Gray:
 Cost-sensitive multi-class classification from probability estimates. 712-719
 Electronic Edition (ACM DL) BibTeX
- Francesco Orabona, Joseph Keshet, Barbara Caputo:
 The projectron: a bounded kernel-based Perceptron. 720-727
 Electronic Edition (ACM DL) BibTeX
- Hua Ouyang, Alex Gray:
 Learning dissimilarities by ranking: from SDP to QP. 728-735
 Electronic Edition (ACM DL) BibTeX
- Jean-François Paiement, Yves Grandvalet, Samy Bengio, Douglas Eck:
 A distance model for rhythms. 736-743
 Electronic Edition (ACM DL) BibTeX
- Mark Palatucci, Andrew Carlson:
 On the chance accuracies of large collections of classifiers. 744-751
 Electronic Edition (ACM DL) BibTeX
- Ronald Parr, Lihong Li, Gavin Taylor, Christopher Painter-Wakefield, Michael L. Littman:
 An analysis of linear models, linear value-function approximation, and feature selection for reinforcement learning. 752-759
 Electronic Edition (ACM DL) BibTeX
- Kai Puolamäki, Antti Ajanki, Samuel Kaski:
 Learning to learn implicit queries from gaze patterns. 760-767
 Electronic Edition (ACM DL) BibTeX
- Yuting Qi, Dehong Liu, David B. Dunson, Lawrence Carin:
 Multi-task compressive sensing with Dirichlet process priors. 768-775
 Electronic Edition (ACM DL) BibTeX
- Novi Quadrianto, Alex J. Smola, Tibério S. Caetano, Quoc V. Le:
 Estimating labels from label proportions. 776-783
 Electronic Edition (ACM DL) BibTeX
- Filip Radlinski, Robert Kleinberg, Thorsten Joachims:
 Learning diverse rankings with multi-armed bandits. 784-791
 Electronic Edition (ACM DL) BibTeX
- Marc'Aurelio Ranzato, Martin Szummer:
 Semi-supervised learning of compact document representations with deep networks. 792-799
 Electronic Edition (ACM DL) BibTeX
- Pradeep Ravikumar, Alekh Agarwal, Martin J. Wainwright:
 Message-passing for graph-structured linear programs: proximal projections, convergence and rounding schemes. 800-807
 Electronic Edition (ACM DL) BibTeX
- Vikas C. Raykar, Balaji Krishnapuram, Jinbo Bi, Murat Dundar, R. Bharat Rao:
 Bayesian multiple instance learning: automatic feature selection and inductive transfer. 808-815
 Electronic Edition (ACM DL) BibTeX
- Joseph Reisinger, Peter Stone, Risto Miikkulainen:
 Online kernel selection for Bayesian reinforcement learning. 816-823
 Electronic Edition (ACM DL) BibTeX
- Lu Ren, David B. Dunson, Lawrence Carin:
 The dynamic hierarchical Dirichlet process. 824-831
 Electronic Edition (ACM DL) BibTeX
- Irina Rish, Genady Grabarnik, Guillermo Cecchi, Francisco Pereira, Geoffrey J. Gordon:
 Closed-form supervised dimensionality reduction with generalized linear models. 832-839
 Electronic Edition (ACM DL) BibTeX
- Saharon Rosset:
 Bi-level path following for cross validated solution of kernel quantile regression. 840-847
 Electronic Edition (ACM DL) BibTeX
- Volker Roth, Bernd Fischer:
 The Group-Lasso for generalized linear models: uniqueness of solutions and efficient algorithms. 848-855
 Electronic Edition (ACM DL) BibTeX
- Hichem Sahbi, Jean-Yves Audibert, Jaonary Rabarisoa, Renaud Keriven:
 Robust matching and recognition using context-dependent kernels. 856-863
 Electronic Edition (ACM DL) BibTeX
- Jun Sakuma, Shigenobu Kobayashi, Rebecca N. Wright:
 Privacy-preserving reinforcement learning. 864-871
 Electronic Edition (ACM DL) BibTeX
- Ruslan Salakhutdinov, Iain Murray:
 On the quantitative analysis of deep belief networks. 872-879
 Electronic Edition (ACM DL) BibTeX
- Ruslan Salakhutdinov, Andriy Mnih:
 Bayesian probabilistic matrix factorization using Markov chain Monte Carlo. 880-887
 Electronic Edition (ACM DL) BibTeX
- Sunita Sarawagi, Rahul Gupta:
 Accurate max-margin training for structured output spaces. 888-895
 Electronic Edition (ACM DL) BibTeX
- Purnamrita Sarkar, Andrew W. Moore, Amit Prakash:
 Fast incremental proximity search in large graphs. 896-903
 Electronic Edition (ACM DL) BibTeX
- Michael Schnall-Levin, Leonid Chindelevitch, Bonnie Berger:
 Inverting the Viterbi algorithm: an abstract framework for structure design. 904-911
 Electronic Edition (ACM DL) BibTeX
- Matthias W. Seeger, Hannes Nickisch:
 Compressed sensing and Bayesian experimental design. 912-919
 Electronic Edition (ACM DL) BibTeX
- Yevgeny Seldin, Naftali Tishby:
 Multi-classification by categorical features via clustering. 920-927
 Electronic Edition (ACM DL) BibTeX
- Shai Shalev-Shwartz, Nathan Srebro:
 SVM optimization: inverse dependence on training set size. 928-935
 Electronic Edition (ACM DL) BibTeX
- Tao Shi, Mikhail Belkin, Bin Yu:
 Data spectroscopy: learning mixture models using eigenspaces of convolution operators. 936-943
 Electronic Edition (ACM DL) BibTeX
- Kilho Shin, Tetsuji Kuboyama:
 A generalization of Haussler's convolution kernel: mapping kernel. 944-951
 Electronic Edition (ACM DL) BibTeX
- Suyash Shringarpure, Eric P. Xing:
 mStruct: a new admixture model for inference of population structure in light of both genetic admixing and allele mutations. 952-959
 Electronic Edition (ACM DL) BibTeX
- Christian D. Sigg, Joachim M. Buhmann:
 Expectation-maximization for sparse and non-negative PCA. 960-967
 Electronic Edition (ACM DL) BibTeX
- David Silver, Richard S. Sutton, Martin Müller:
 Sample-based learning and search with permanent and transient memories. 968-975
 Electronic Edition (ACM DL) BibTeX
- Vikas Sindhwani, David S. Rosenberg:
 An RKHS for multi-view learning and manifold co-regularization. 976-983
 Electronic Edition (ACM DL) BibTeX
- Nataliya Sokolovska, Olivier Cappé, François Yvon:
 The asymptotics of semi-supervised learning in discriminative probabilistic models. 984-991
 Electronic Edition (ACM DL) BibTeX
- Le Song, Xinhua Zhang, Alex J. Smola, Arthur Gretton, Bernhard Schölkopf:
 Tailoring density estimation via reproducing kernel moment matching. 992-999
 Electronic Edition (ACM DL) BibTeX
- Daria Sorokina, Rich Caruana, Mirek Riedewald, Daniel Fink:
 Detecting statistical interactions with additive groves of trees. 1000-1007
 Electronic Edition (ACM DL) BibTeX
- Bharath K. Sriperumbudur, Omer A. Lang, Gert R. G. Lanckriet:
 Metric embedding for kernel classification rules. 1008-1015
 Electronic Edition (ACM DL) BibTeX
- Jiang Su, Harry Zhang, Charles X. Ling, Stan Matwin:
 Discriminative parameter learning for Bayesian networks. 1016-1023
 Electronic Edition (ACM DL) BibTeX
- Liang Sun, Shuiwang Ji, Jieping Ye:
 A least squares formulation for canonical correlation analysis. 1024-1031
 Electronic Edition (ACM DL) BibTeX
- Umar Syed, Michael H. Bowling, Robert E. Schapire:
 Apprenticeship learning using linear programming. 1032-1039
 Electronic Edition (ACM DL) BibTeX
- Marie Szafranski, Yves Grandvalet, Alain Rakotomamonjy:
 Composite kernel learning. 1040-1047
 Electronic Edition (ACM DL) BibTeX
- Istvan Szita, András Lörincz:
 The many faces of optimism: a unifying approach. 1048-1055
 Electronic Edition (ACM DL) BibTeX
- Akiko Takeda, Masashi Sugiyama:
 nu-support vector machine as conditional value-at-risk minimization. 1056-1063
 Electronic Edition (ACM DL) BibTeX
- Tijmen Tieleman:
 Training restricted Boltzmann machines using approximations to the likelihood gradient. 1064-1071
 Electronic Edition (ACM DL) BibTeX
- Tsuyoshi Ueno, Motoaki Kawanabe, Takeshi Mori, Shin-ichi Maeda, Shin Ishii:
 A semiparametric statistical approach to model-free policy evaluation. 1072-1079
 Electronic Edition (ACM DL) BibTeX
- Raquel Urtasun, David J. Fleet, Andreas Geiger, Jovan Popovic, Trevor Darrell, Neil D. Lawrence:
 Topologically-constrained latent variable models. 1080-1087
 Electronic Edition (ACM DL) BibTeX
- Jurgen Van Gael, Yunus Saatci, Yee Whye Teh, Zoubin Ghahramani:
 Beam sampling for the infinite hidden Markov model. 1088-1095
 Electronic Edition (ACM DL) BibTeX
- Pascal Vincent, Hugo Larochelle, Yoshua Bengio, Pierre-Antoine Manzagol:
 Extracting and composing robust features with denoising autoencoders. 1096-1103
 Electronic Edition (ACM DL) BibTeX
- Vladimir Vovk, Fedor Zhdanov:
 Prediction with expert advice for the Brier game. 1104-1111
 Electronic Edition (ACM DL) BibTeX
- Christian Walder, Kwang In Kim, Bernhard Schölkopf:
 Sparse multiscale gaussian process regression. 1112-1119
 Electronic Edition (ACM DL) BibTeX
- Chang Wang, Sridhar Mahadevan:
 Manifold alignment using Procrustes analysis. 1120-1127
 Electronic Edition (ACM DL) BibTeX
- Hua-Yan Wang, Qiang Yang, Hong Qin, Hongbin Zha:
 Dirichlet component analysis: feature extraction for compositional data. 1128-1135
 Electronic Edition (ACM DL) BibTeX
- Hua-Yan Wang, Qiang Yang, Hongbin Zha:
 Adaptive p-posterior mixture-model kernels for multiple instance learning. 1136-1143
 Electronic Edition (ACM DL) BibTeX
- Jun Wang, Tony Jebara, Shih-Fu Chang:
 Graph transduction via alternating minimization. 1144-1151
 Electronic Edition (ACM DL) BibTeX
- Wei Wang, Zhi-Hua Zhou:
 On multi-view active learning and the combination with semi-supervised learning. 1152-1159
 Electronic Edition (ACM DL) BibTeX
- Kilian Q. Weinberger, Lawrence K. Saul:
 Fast solvers and efficient implementations for distance metric learning. 1160-1167
 Electronic Edition (ACM DL) BibTeX
- Jason Weston, Frédéric Ratle, Ronan Collobert:
 Deep learning via semi-supervised embedding. 1168-1175
 Electronic Edition (ACM DL) BibTeX
- David Wingate, Satinder P. Singh:
 Efficiently learning linear-linear exponential family predictive representations of state. 1176-1183
 Electronic Edition (ACM DL) BibTeX
- Jason Wolfe, Aria Haghighi, Dan Klein:
 Fully distributed EM for very large datasets. 1184-1191
 Electronic Edition (ACM DL) BibTeX
- Fen Xia, Tie-Yan Liu, Jue Wang, Wensheng Zhang, Hang Li:
 Listwise approach to learning to rank: theory and algorithm. 1192-1199
 Electronic Edition (ACM DL) BibTeX
- Fusun Yaman, Thomas J. Walsh, Michael L. Littman, Marie desJardins:
 Democratic approximation of lexicographic preference models. 1200-1207
 Electronic Edition (ACM DL) BibTeX
- Hengshuai Yao, Zhi-Qiang Liu:
 Preconditioned temporal difference learning. 1208-1215
 Electronic Edition (ACM DL) BibTeX
- Jin Yu, S. V. N. Vishwanathan, Simon Günter, Nicol N. Schraudolph:
 A quasi-Newton approach to non-smooth convex optimization. 1216-1223
 Electronic Edition (ACM DL) BibTeX
- Yisong Yue, Thorsten Joachims:
 Predicting diverse subsets using structural SVMs. 1224-1231
 Electronic Edition (ACM DL) BibTeX
- Kai Zhang, Ivor W. Tsang, James T. Kwok:
 Improved Nyström low-rank approximation and error analysis. 1232-1239
 Electronic Edition (ACM DL) BibTeX
- Zhenjie Zhang, Bing Tian Dai, Anthony K. H. Tung:
 Estimating local optimums in EM algorithm over Gaussian mixture model. 1240-1247
 Electronic Edition (ACM DL) BibTeX
- Bin Zhao, Fei Wang, Changshui Zhang:
 Efficient multiclass maximum margin clustering. 1248-1255
 Electronic Edition (ACM DL) BibTeX
- Jun Zhu, Eric P. Xing, Bo Zhang:
 Laplace maximum margin Markov networks. 1256-1263
 Electronic Edition (ACM DL) BibTeX
2009-04-15
ICML 2008的论文集合
转载自 http://www.informatik.uni-trier.de/~ley/db/conf/icml/icml2008.html
订阅:
博文评论 (Atom)
 
 

没有评论:
发表评论